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Table 3. Test of the theoretical results for the best centrosymmetric models 

(A1, S1) (A2, S1) (A3, $1) (B1, $2) (B2, $2) (B3, $2) 

R index /~ (larl) aft (larl) /~ (larl) g (lar[> ~ (larl> g (IArl) 
l~t (Ft) 9.0 0.061 26.6 0.179 34.7 0.246 5.9 0.041 12.6 0-084 21.6 0-143 
/~l(Yt) 10.4 0.061 30.0 0.175 39.3 0-245 6.8 0.041 14.2 0.081 24.2 0.138 
-~t (It) 11.4 0.066 34.0 0.187 44.7 0.249 6.4 0.036 13.0 0.074 23.5 0.130 
R~(z,) 15.9 0.062 46.7 0.180 65.3 0.262 9.1 0.040 18.7 0.071 33.8 0.129 

B/~I(Ft) 0"9 0"067 7"3 0"190 12"1 0'253 0"3 0"040 1-4 0"083 4.1 0"140 
B/~l(yt) 1"6 0"063 11"9 0.178 20"8 0"250 0"5 0"036 2"3 0"075 6"7 0"131 
BR~(It) 0"6 0.064 5"4 0"177 8-4 0"225 0-2 0-040 0"7 0"068 2-1 0"113 
8Rl(zt) 3"2 0"066 24"8 0"191 53"8 0"283 0-6 0"031 2"7 0"061 10"1 0"124 
Rf(F,) 15.2 0.060 43.0 0.185 52.1 0.256 11.1 0.045 25.0 0.095 39-6 0.164 
Rf(It) 28"5 0"059 70"9 0"181 83"7 0"250 21-4 0"045 44.2 0-094 65-7 0"160 

(I Arl)es t 0"063 0"182 0"252 0"039 0"079 0"137 

<larl) . . . .  0.064 0.162 0.227 0.041 0.079 0.131 

Note: R is in % and ([Ar[) is in A,. ([Arl)e~t is the average value in the respective columns. 

centrosymmetric structure S1 would be the BCM for 
all these three non-centrosymmetric structures A1, 
A2 and A3. In each case the structure factor calcu- 
lated using the known coordinates (of A1, A2 or A3) 
were taken to correspond to FN. The structure factors 
calculated using the known coordinates of structure 
S1 were taken to correspond to F~v. The overall 
values of various R indices for the three cases, namely 
(i) (A1, S1), (ii) (A2, S1) and (iii) (A3, S1), were 
computed omitting reflections for which yN <0.3 
(=Yt) and these are given in columns 2, 4 and 6 of 
Table 3. The theoretically expected values of (IArl) 
were then estimated from the respective R values by 
interpolation using the results in Table 2 and the 
results thus obtained are given in columns 3, 5 and 
7 respectively of Table 3. The average of the (IArl) 
values thus obtained from the 'observed' overall 
values of the R indices are given in the row marked 
(I A rl)est under the respective columns. The true values 
of(IArl) for the three cases, namely (A1, S1), (A2, S1) 
and (A3, S1), are given in the last row marked 
(larl>t~o. A similar procedure was used in the case 

of the centrosymmetric structure of Hanson & Rohrl 
(1972) (referred to as structure $2) and three non- 
centrosymmetric structures (called B1, B2 and B3) 
with ([Ar])=0.041, 0.079 and 0.131/~, respectively, 
were generated. The relevant final results obtained 
for the three cases, namely (B1, $2), (B2, $2) and 
(B3, $2), are also summarized in Table 3. It is seen 
from Table 3 that there is reasonably good agreement 
between the corresponding values of ([Ar[)est and 
([Ar[)true in all cases. 
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Abstract 

A formula is developed which gives the histogram of 
electron density values for polypeptide structures. 
The six parameters of the formula have been evalu- 
ated and are given for a range of resolutions from 
4.5 to 0.9 ~ .  The formula may be used in density 
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modification techniques of map improvement for 
small proteins. 

Introduction 

Some recent papers (Zhang & Main, 1990a, b; Main, 
1990) have described a method of determination and 
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refinement of phases for protein structures which 
makes use of the image processing technique of his- 
togram matching. The histogram used is the distribu- 
tion of electron density values in the unit cell and 
typical histograms are illustrated in Zhang & Main 
(1990a). Since the true electron density is unknown 
at this stage of the structure determination, the his- 
togram must be obtained either from the electron 
density map of a similar but known structure or from 
a formula. Both methods have been used successfully 
in this work. This paper describes the development 
of a suitable formula and gives values for the param- 
eters which allow the density histogram of an equal- 
atom structure to be predicted for resolutions from 
4.5 to 0.9 A. 

The h i s t o g r a m  f o r m u l a  

At atomic resolution, where the phase-determination 
method referred to above works best, the electron 
density may be assumed to consist of approximately 
Gaussian atoms on a fairly flat background. The 
formula which we seek should model both of these 
regions of the cell. That is, the high density'values 
should be modelled by the histogram of Gaussian 
peaks and the low values by the histogram of an 
assumed randomly distributed background. The latter 
is easily obtained, since the histogram of randomly 
distributed values is the well known Gaussian 
function 

P(p) dpocexp [-(p-p,,,)2/2o-2] dp, (1) 

where P(p) is the probability density of the electron 
density p, p,,, is the mean of the distribution and o- 
is its standard deviation. 

The functional form of the histogram of the 
Gaussian peaks may be derived as follows. The elec- 
tron density of a Gaussian atom at a distance r from 
its centre is given by 

P = Po exp (-br2), (2) 

where/90 is the peak density and b is a constant. Since 
p is a monotonically decreasing function of r and is 
spherically symmetric, the probability of finding any 
particular value of p is proportional to the incre- 
mental volume at the corresponding value of r; i.e. 

P(p) droc 4"a'r 2 dr. (3) 

Differentiation of (2) gives 

d r =  -dp/2brp.  (4) 

The negative sign means that r increases as p 
decreases, but it is the absolute value that must be 
used in the probability expression. Substitution for 
dr in (3) gives 

P(p) dpoc2(Trr/bp) dp. (5) 

Eliminating r between (2) and (5) and leaving out 

the constant of proportionality, we obtain the 
expression for the density histogram of a Gaussian 
atom as 

P(p) dpoc(1/p)  ln'/2 (po/p) dp. (6) 

This expression cannot be normalized until the 
volume containing the atom is known. Note that when 
P > P0, (6) gives a meaningless value for the proba- 
bility. 

We now have the two components of the histogram 
formula-expressions (1) for the low densities and 
(6) for the high. The change over between the two 
presents a problem, however, because nowhere is 
there a natural match of values. A rather clumsy 
method has therefore had to be adopted, but it works 
satisfactorily. Two threshold values of p are desig- 
nated as Pl and P2 (/91 (P2)  such that (1) is used when 
p < p~ and (6) is used when p > p2. When Pl < p < P2, 
a cubic polynomial is used which matches (1) at pl 
and (6) at p2. The complete formula can be expressed 
mathematically as: 

for p < pl 

P(p) = N exp [ - ( p  - p,,)2/2o-2]; (7a) 

for Pl < p < P2 

P(p) = N(ap3+ bp2-b cp -b d); (7b) 

for P2 < P < PO 

P(p) = N ( A / p )  In '/2 (Po/P). (7c) 

The parameter A gives the relative weight of the terms 
in (7a) and (7c) and N is a normalizing factor. 

At low resolution, the parameters a, b, c, d of the 
cubic (7b) are calculated by matching the function 
values and the gradients at Pl and p2. Let us define 
the function values as 

Y l  = e x p  [ - ( p ,  - p,,,)2/20.2]; 
(8a) 

Y2 = (A/  P2) In 1/2 (Po/ /92) 

and the gradients as 

s, = - [  ( p , -  p=)/o "2] exp [ - ( p , -  p,,)2/2o-23; 

s2 = - (  A /  p 2)Eln l/2 (po/ P2) (8b) 

+ (po/2p2) In -'/2 (Po/P2)]. 

It is also convenient to define the mean slope between 
the two points as 

So = ( y , -  Y2)/(P,-  P2). (8c) 

The cubic parameters are then obtained from the 
relationships: 

a = (sl + s2-  2So)/(Pl-/92)2; (9a) 

b = ( s o - s 2 ) / ( p l - p 2 ) - ( p l + 2 p E ) a ;  (9b) 

c = s2-  3ap 2 -  2bp2; (9c) 

d = y2-  ap~- bp~- cp2. (9d) 
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Unfortunately, at high resolution, the cubic some- 
times exhibits maxima and minima within the useful" 
range of p, which is unreasonable for an electron 
density histogram. This is avoided by removing the 
requirement that the gradients should match at pl 
and replacing it by the condition that there be 
no maximum or minimum on the curve, i.e. that 
b2-3ac=O.  This changes (9a) to 

2So + s2-  [3 s2(4So- s2) ]1/2 
a = 2(p _p2) 2 (10) 

and the parameters b, c and d are evaluated from the 
relationships (9) as before. 

Evaluation of the parameters 

The parameters in the histogram formula to be deter- 
mined are pro, tr, A, Pl, P2 and Po. Since the normaliz- 
ing factor does not alter the shape of the function 
and as it depends upon the actual application, it is 
not evaluated at this stage. 

The parameter po (the maximum value of p in the 
map) was most easily evaluated by inspecting the 
electron density maps of a number of equal-atom 
structures. In order to evaluate the other parameters, 
histograms of known polypeptide structures were 
calculated and added together, then a curve was fitted 
to the accumulated histogram with the parameters as 
variables. In setting up the histograms, care was taken 
to use only the molecular density and to leave out 
the surrounding solvent regions. This was achieved 
by determining the molecular envelope from the 
known atomic positions and using density only from 
within the envelope. 

The histogram is also a function of resolution, so 
each histogram was set up at a number of resolutions 
and the parameters evaluated for each. The low- 
resolution histograms (4.5 to 2.2/~) made use of a 
cubic curve that matched the other curves in value 
and gradient at am and P2 [(7b) and (9)]. However, 
at 2.2 tl, this cubic exhibited a small maximum and 
minimum which became larger as the resolution 
increased. The higher-resolution histograms (2.2 to 
0.9 A) therefore used the alternative cubic which does 
not allow maxima or minima and whose parameters 
are calculated from (10) and (9b), (9c) and (9d). 

The method of curve fitting adopted was the 
simplex algorithm of Nelder & Mead (1964). It is 
particularly suited to this kind of problem where the 
function cannot be differentiated with respect to all 
the parameters and not all parameters are well deter- 
mined by the data. Electron density values were 
weighted to perform the fitting, since high density 
(corresponding to the atomic peaks) is clearly more 
important than low. The weights used were propor- 
tional to p + 5. 

Table 1. Values o f  the histogram parameters for  equal- 
atom structures 

Equation (9) is used to calculate the cubic parameters. 

Resolution 
(f~) Pm 20"2 A Pl P2 Po 
4"5 0"119 0"065 0"396 0"167 0"845 1"25 
3"5 0"036 0"071 0"378 0"098 1-200 1"52 
2"8 -0-028 0"084 0"322 0"059 1"243 1"93 
2"2 -0"042 0" 114 0"225 0" 122 1'283 2-73 

Table 2. Values o f  the histogram parameters for  equal- 
atom structures 

Equation (10) is used to evaluate a. The remaining cubic parameters 
are obtained from (9). 

Resolution 
(/~) Pm 2o'2 A Pl P2 Po 
2-2 -0.035 0.121 0.230 0.275 1.382 2.73 
1-8 -0.022 0"134 0"139 0"395 1"540 3.64 
1"4 0-010 0-142 0"074 0"535 1.843 5"50 
1"1 0"011 0-211 0"039 0"375 1"382 8.09 
0"9 0"029 0"176 0-020 0"356 1-463 11"45 

The results obtained are set out in Tables 1 and 2. 
The resolutions were chosen such that the number of 
reflexions approximately doubles with each increase 
in resolution. The assumptions used in setting up the 
formula-Gauss ian  atoms on a fairly flat back- 
ground-  become invalid at low resolution but, sur- 
prisingly, the formula still gives a good fit to real 
histograms at all resolutions tested, i.e. between 4.5 
and 0.9/~. At all resolutions, the model curves deviate 
less from the accumulated histograms to which they 
were fitted than the differences between the his- 
tograms of different structures. 

Use of the formula 

The histogram formula is used to predict the distribu- 
tion of electron density values in the histogram match- 
ing technique of Zhang & Main (1990a) and its later 
development (Main, 1990; Zhang & Main, 1990b). It 
may be applied at any resolution from 4.5 to 0.9/~, 
and not just at the values shown in the tables. Values 
of the histogram parameters at resolutions which are 
intermediate to those shown in the tables may be 
obtained with sufficient accuracy by linear interpo- 
lation. 
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